Kalmangrad
kalmangrad
is a python package that calculates automated smooth N’th order derivatives of non-uniformly sampled time series data. The approach leverages Bayesian filtering techniques to compute derivatives up to any specified order, offering a robust alternative to traditional numerical differentiation methods that are sensitive to noise. This package is built on top of the underlying bayesfilter package.
Table of Contents
Introduction
Estimating derivatives from noisy data is a common challenge in fields like signal processing, control systems, and data analysis. Traditional numerical differentiation amplifies noise, leading to inaccurate results. Anyone who has naiivly attempted to differentiate sensor data has run into this problem. This repository implements a bayesian filtering based method to estimate derivatives of any order, providing smoother and more accurate estimates even in the presence of noise and non-uniform sampling.
Features
- Higher-Order Derivative Estimation: Compute derivatives up to any specified order.
- Robust to Noise: Uses Bayesian filtering to mitigate the effects of noise in the data.
- Flexible Time Steps: Handles non-uniformly sampled data with automatic time step adjustment.
- Easy Integration: Its simple API allows for easy integration into existing projects.
- Few Dependencies: Requires only NumPy and the BayesFilter package (which is turn just needs NumPy).
Installation
-
Install from PyPI:
-
Install from Source:
-
Clone the repository:
-
Install the package:
-
Usage
The main function provided is grad
, which estimates the derivatives of the input data y
sampled at times t
.
Example
Below is an example demonstrating how to estimate the first and second derivatives of noisy sinusoidal data.
import numpy as np import matplotlib.pyplot as plt # Import the grad function from kalmangrad import grad # Replace with the actual module name # Generate noisy sinusoidal data with random time points np.random.seed(0) t = sorted(np.random.uniform(0.0, 10.0, 100)) noise_std = 0.01 y = np.sin(t) + noise_std * np.random.randn(len(t)) true_first_derivative = np.cos(t) true_second_derivative = -np.sin(t) # Estimate derivatives using the Kalman filter N = 2 # Order of the highest derivative to estimate smoother_states, filter_times = grad(y, t, n=N) # Extract estimated derivatives estimated_position = [state.mean()[0] for state in smoother_states] estimated_first_derivative = [state.mean()[1] for state in smoother_states] estimated_second_derivative = [state.mean()[2] for state in smoother_states] # Plot the results plt.figure(figsize=(12, 9)) # Position plt.subplot(3, 1, 1) plt.plot(t, y, 'k.', label='Noisy Observations') plt.plot(filter_times, estimated_position, 'b-', label='Estimated Position') plt.plot(t, np.sin(t), 'r--', label='True Position') plt.legend(loc='upper right') plt.ylim(-1.5, 1.5) plt.title('Position') # First Derivative plt.subplot(3, 1, 2) plt.plot(filter_times, estimated_first_derivative, 'b-', label='Estimated First Derivative') plt.plot(t, true_first_derivative, 'r--', label='True First Derivative') plt.plot( t, np.gradient(y, t), 'k-', label='np.gradient calculated derivative' ) plt.legend(loc='upper right') plt.ylim(-1.5, 1.5) plt.title('First Derivative') # Second Derivative plt.subplot(3, 1, 3) plt.plot(filter_times, estimated_second_derivative, 'b-', label='Estimated Second Derivative') plt.plot(t, true_second_derivative, 'r--', label='True Second Derivative') plt.legend(loc='upper right') plt.ylim(-1.5, 1.5) plt.title('Second Derivative') plt.tight_layout() plt.show()
Explanation:
- Data Generation: We generate noisy observations of a sine wave.
- Derivative Estimation: The
grad
function is called withn=2
to estimate up to the second derivative. - Result Extraction: The mean estimates for position and derivatives are extracted from the Gaussian states.
- Visualization: The true functions and the estimates are plotted for comparison.
Functions Overview
transition_func(y, delta_t, n)
Computes the new state vector at time t + delta_t
given the current state vector y
at time t
, for a Kalman filter of order n
.
-
Parameters:
y (np.ndarray)
: Current state vector[y, y', y'', ..., y^(n)]^T
.delta_t (float)
: Time step.n (int)
: Order of the derivative.
-
Returns:
new_y (np.ndarray)
: Updated state vector at timet + delta_t
.
transition_matrix(delta_t, n)
Returns the state transition matrix A
for a Kalman filter of order n
.
-
Parameters:
delta_t (float)
: Time step.n (int)
: Order of the derivative.
-
Returns:
A (np.ndarray)
: Transition matrix of size(n+1, n+1)
.
observation_func(state)
Extracts the observation from the state vector. Currently, it observes only the first element (position).
-
Parameters:
state (np.ndarray)
: State vector.
-
Returns:
np.ndarray
: Observation vector.
jac_observation_func(state)
Computes the Jacobian of the observation function with respect to the state vector.
-
Parameters:
state (np.ndarray)
: State vector.
-
Returns:
np.ndarray
: Jacobian matrix of size(1, n+1)
.
grad(y, t, n=1, delta_t=None, obs_noise_std=1e-2)
Main function to estimate the derivatives of the input data y
up to order n
.
-
Parameters:
y (np.ndarray)
: Observed data array.t (np.ndarray)
: Time points corresponding toy
.n (int)
: Maximum order of derivative to estimate (default is1
).delta_t (float, optional)
: Time step for the Kalman filter. IfNone
, it is automatically determined.obs_noise_std (float)
: Standard deviation of the observation noise.
-
Returns:
smoother_states (List[Gaussian])
: List of Gaussian states containing mean and covariance estimates for each time step.filter_times (np.ndarray)
: Time points corresponding to the estimates.
Dependencies
-
Python 3.x
-
NumPy: For numerical computations.
-
Matplotlib: For plotting results.
-
BayesFilter: For Bayesian filtering and smoothing.
Install via:
pip install numpy matplotlib bayesfilter
License
This project is licensed under the MIT License – see the LICENSE file for details.
Disclaimer: This code is provided as-is without any guarantees. Please test and validate the code in your specific context.